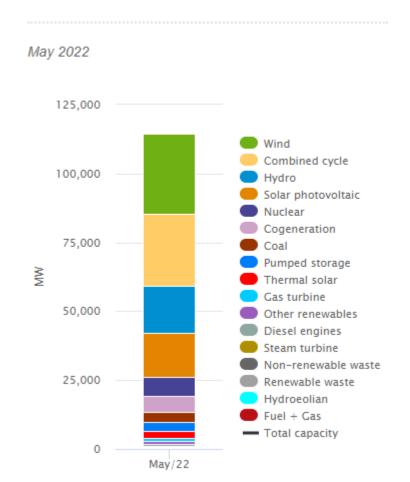
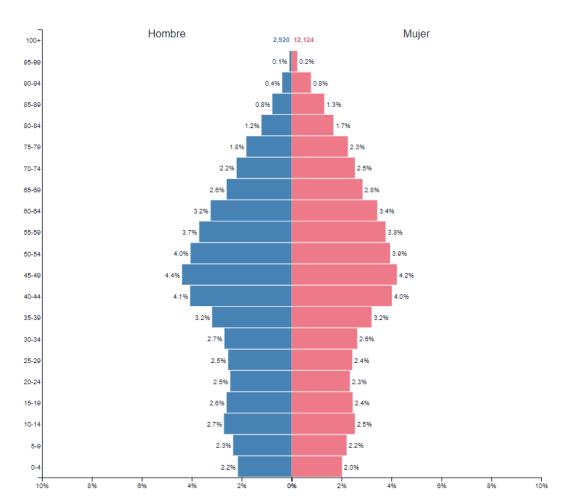

COUNTRY REPORT SPAIN

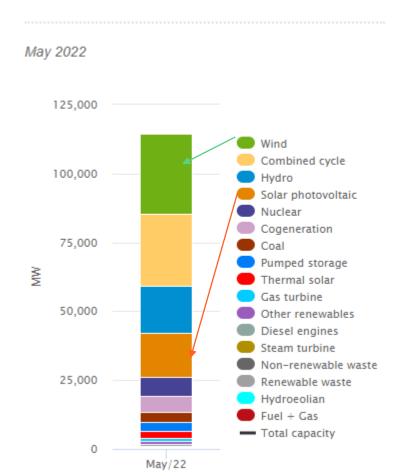
Delegate: Dr. Cristina Prieto
University of Seville


93nd Executive Committee Meeting (XC93)
19th May 2022

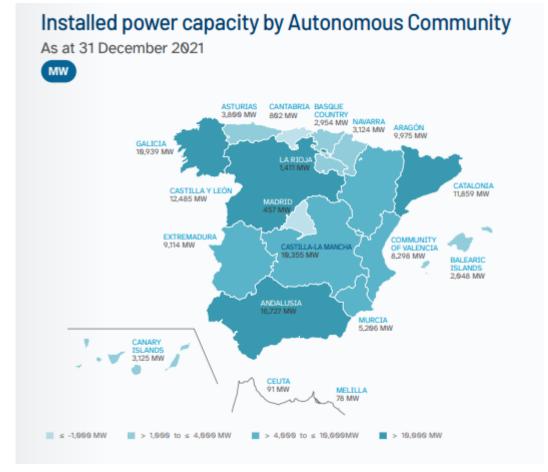
2022 Población: 46,719,147

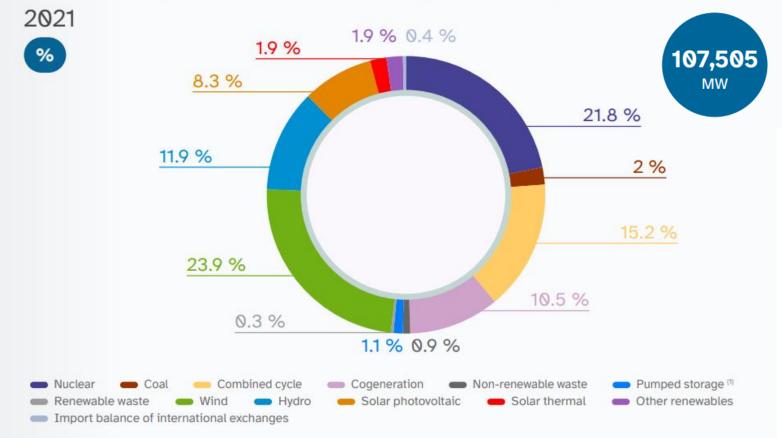


NATIONAL INSTALLED CAPACITY



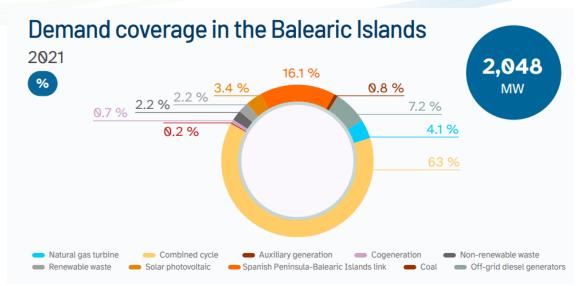
2022 Población: 46,719,147


NATIONAL INSTALLED CAPACITY

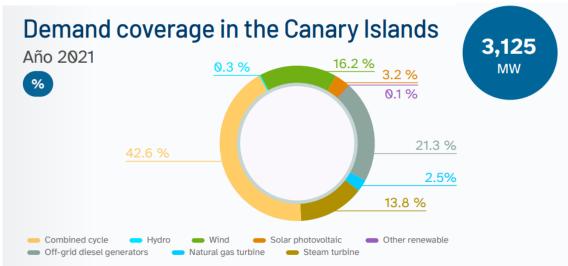


https://www.ree.es/sites/default/files/publication/2022/04/downloadable/avance_ISE_2021_EN.pdf

48.4 % share of renewables in the overall peninsular electricity generation mix

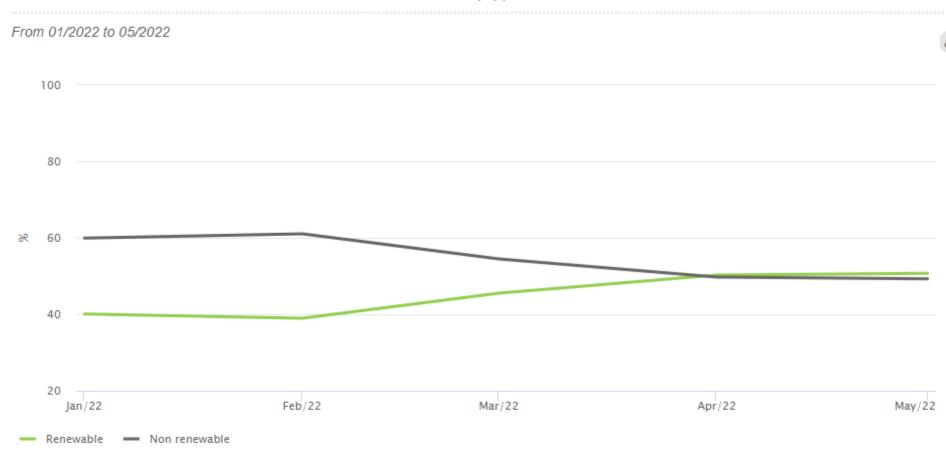


https://www.ree.es/sites/default/files/publication/2022/04/downloadable/avance ISE 2021


_EN.pdf

(1) Pure pumped storage + estimated mixed pumped storage.

In terms of demand coverage in the electricity generation mix of the Balearic Islands, the share of coal-fired production continued to decrease, closing the year at only 0.8% (4.5% in 2020), and combined cycle continued to grow, reaching a share of 63% (48.8% in 2020).



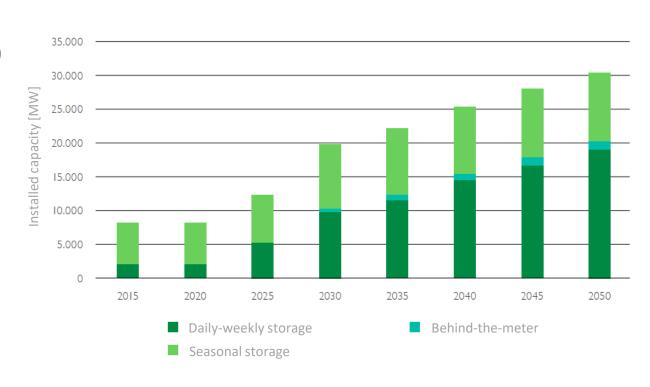
Regarding the Canary Islands, renewable energy covered 19.9% of annual demand, the highest value ever registered to date, a significant value for an isolated electricity system, and that in March 2021 contributed to covering up to 30.5% of the generation mix.

https://www.ree.es/sites/default/files/publication/2022/04/downloadable/avance_ISE_2021EN.pdf

EVOLUTION OF RENEWABLE AND NON-RENEWABLE GENERATION (%) | ELECTRICITY SYSTEM: National

National Integrated Plan for Energy and Climate (PNIEC)

- Ecological transition to net-zero
- 74% renewable capacity in electricity generation by 2030 (100% in 2050)
- 42% of renewable energy by final use by 2030 (32% EU target)
- 6 GW storage capacity by 2050


Renewable final energy evolution by sector (PNIEC)

Sector	2021	2030	Variation
Electric generation	10208 ktoe	21792 ktoe	113%
Heat pumps	629 ktoe	3523 ktoe	460%
Residential	2640ktoe	2876ktoe	9%
Industry	1596 ktoe	1779 ktoe	11%
Transport (biofuels)	2348ktoe	2111ktoe	-10%
Agricultural	119ktoe	220ktoe	85%
Other	241ktoe	435 ktoe	80%

National Energy Storage Strategy based on PNIEC

- Allow 74% renewable capacity in electricity generation by 2030 and 100% in 2050
- Technologically neutral
 - Thermal storage promoted
 - Technological leadership in Spain (Molten salts)
 - Electro-chemical storage promoted
 - Already commercially present
 - Electric vehicle potential
 - Green hydrogen promoted
- Storage as multi-services provider
- 30 GW storage capacity by 2050

National programs

- Recovery, Transformation and Resilience Plan (PRTR)
 - > Plan to regulate European funding for resilience after COVID
 - > 140 000 M€
 - > 40% dedicated to ecologic transition
 - Two funding schemes:
 - Regional specific funds for local needs
 - Strategic lines at country level (PERTE)
 - Several strategic lines: Renewal Energies, green Hydrogen and Storage (PERTE-ERHA)
 - 7 000 M€
 - First grant for R&D innovative Energy Storage (50 M€) closed the 10th May
 - Iberian Center for R&D in Energy Storage

National programs

- SolCan, EolCan2 and SolBal2
 - Construction and start-up of power generation installations based on PV and wind in Spanish islands
 - > Storage as a bonus
 - > 20 M€ / 54 M€ / 20 M€
- R&D instruments by the National Research Agency (AEI)

Parque de generación del Escenario Objetivo (MW)				
Año	2015	2020*	2025*	2030*
Eólica (terrestre y marítima)	22.925	28.033	40.633	50.333
Solar fotovoltaica	4.854	9.071	21.713	39.181
Solar termoeléctrica	2.300	2.303	4.803	7.303
Hidráulica	14.104	14.109	14.359	14.609
Bombeo Mixto	2.687	2.687	2.687	2.687
Bombeo Puro	3.337	3.337	4.212	6.837
Biogás	223	211	241	241
Otras renovables	0	0	40	80
Biomasa	677	613	815	1.408
Carbón	11.311	7.897	2.165	0
Ciclo combinado	26.612	26.612	26.612	26.612
Cogeneración	6.143	5.239	4.373	3.670
Fuel y Fuel/Gas (Territorios No Peninsulares)	3.708	3.708	2.781	1.854
Residuos y otros	893	610	470	341
Nuclear	7.399	7.399	7.399	3.181
Almacenamiento	0	0	500	2.500
Total	107.173	111.829	133.802	160.837

^{*}Los datos de 2020, 2025 y 2030 son estimaciones del Escenario Objetivo del PNIEC.

Fuente: Ministerio para la Transición Ecológica y el Reto Demográfico, 2019

93nd Executive Committee Meeting (XC93) May 19th

			Abr/22	
		Hidráulica	17.094	
Na	atio	Turbinación bombeo	3.331	
		Nuclear	7.117	
	Sol	Carbón	3.764	
	> C	Fuel + Gas	8	
	g	Motores diésel	769	no
	ک V	Turbina de gas	1.149	110
	_	Turbina de vapor	483	
	> S	Ciclo combinado	26.250	
	> 2	Hidroeólica	11	
	DO	Eólica	28.743	
	R&	Solar fotovoltaica	15.812	
	Res	Solar térmica	2.304	
		Otras renovables	1.093	
		Cogeneración	5.656	
		Residuos no renovables	441	
		Residuos renovables	170	
		Potencia total	114.196	

Parque de generación del Escenario Objetivo (MW)					
Año	2015	2020*	2025*	2030*	
Eólica (terrestre y marítima)	22.925	28.033	40.633	50.333	
Solar fotovoltaica	4.854	9.071	21.713	39.181	
Solar termoeléctrica	2.300	2.303	4.803	7.303	
Hidráulica	14.104	14.109	14.359	14.609	
Bombeo Mixto	2.687	2.687	2.687	2.687	
Bombeo Puro	3.337	3.337	4.212	6.837	
Biogás	223	211	241	241	
Otras renovables	0	0	40	80	
Biomasa	677	613	815	1.408	
Carbón	11.311	7.897	2.165	0	
Ciclo combinado	26.612	26.612	26.612	26.612	
Cogeneración	6.143	5.239	4.373	3.670	
Fuel y Fuel/Gas (Territorios No Peninsulares)	3.708	3.708	2.781	1.854	
Residuos y otros	893	610	470	341	
Nuclear	7.399	7.399	7.399	3.181	
Almacenamiento	0	0	500	2.500	
Total	107.173	111.829	133.802	160.837	

^{*}Los datos de 2020, 2025 y 2030 son estimaciones del Escenario Objetivo del PNIEC.

Fuente: Ministerio para la Transición Ecológica y el Reto Demográfico, 2019

				*
	Technology	Energy Capacity	Round-trip Efficiency	Maturity
	Pump (PHS)	1-100 GWh	80%	***
	Heat pump (PHES)	500 kWh - 1 GWh	70 - 75%	
	Adiabatic compressed air (ACAES)	10 MWh - 10 GWh	> 70%	***
Mechanic	Compressed Air (CAES)	10 MWh - 10 GWh	45 - 60%	
	Liquified Air (LAES)	10 MWh - 8 GWh	50 - 100%	****
	Flywheels	5 - 10 kWh	85%	***
	Batteries (Li-ion)	< 10 MWh	86%	***
Electrochemical	Flow Batteries (V, Zn, Fe, Zn-Br)	< 100 MWh	70%	
Electric	Superconducting magnetic (SMES)	1 - 10 kWh	> 90%	***
Electric	Supercapacitor	1 - 5 kWh	90%	****
Chemical	Power to gas (H2)	up to 100 GWh	20 - 40%	****
	Power to X (P2X)	1 MWh - several GWh	50%	****
	Heat: sensible (molten salts)	100 MWh - 10 GWh	40 - 60%	***
Thermal	Heat: sensible	10 - 50 kWht	50 - 90%	***
	Heat: latent (PCM)	50 - 150 kWht	75 - 90%	***
	Heat: thermochemical (TCS)	12 - 250 kWht	75 -100%	

93nd Executive Committee Meeting (XC93) May 19th

Energy Storage Landscape

CIDETEC, Ikerlan CIC EnergiGUNE, Tekniker **University of Oviedo** EDP, ENFASYS INCAR Cegasa CENER, Alba Renova ITG University of Zaragoza BeePlanet HYDRAREDOX IBERIA, IBERSYD, LIFTEC University of Santiago de Compostela University of Lleida, REDTES CARTIF, CIUDEN University of Barcelona, ICMAB University of Burgos Polytechnic University of Catalonia AEPIBAL, BATTERYPLAT Carlos III University of Madrid **RMelectronics** IMDEA, CSIC, INTA, CIEMAT, University of Rovira i Virgili ASEALEN, Enerfín, IGNIS Naturgy, Ketter Batteries, X-ELIO Jaume I University, Abervian CIIAE Endesa, Capital Energy, B5tec Technical University of Valencia Eléctricas Pitarch ITE, Esparity Solar University of Seville E22, AMPERE ENERGY, HESStec, LOMARTOV Loyola University Abengoa, B2Z, Kyoto, kemtecnia University of Castilla–La Mancha EnergyNEST, Virtualmech, **PSA** Research Centres > 20 CNH₂ Magtel, CEN, Rpow, ATA **Associations GFM** Universities > 13

TECNALIA, IBERDROLA

> 32

Industries

Policies & Market

Specific ES policies

- Law 24/2013 of the electricity sector (General Law that regulates the electricity sector)
- > RD 110/2015 on waste electrical and electronic equipment
- > RD 244/2019 Technical, administrative and economic regulation for self-consumption
 - Allows storage facilities for self-consumption
- > RD 23/2020 Defines the legal figure of owner of storage facilities
- > RD 960/2020 Regulation of the economic regime of Renewable Energies
- > RD 1183/2020 regulates access to storage facilities to the grid
 - Storage facilities as productions plants
 - Allows hybridization of production plants with storage systems (both new and existing)
- > RD 27/2021 on batteries and accumulators and the environmental management of their waste
- > RD 6/2022 on the response of the consequences of the Ukrainian war
- > CNMC Circular 3/2020 establishing the methodology for calculating electricity transmission and distribution tolls
- CNMC Circular 1/2021 Establishes methodology and conditions for access and connection to transportation and distribution networks, including storage facilities in its scope
- > CNMC Resolution of December 11th, 2019, that approves conditions related to grid balance
- > CNMC Resolution of December 10th, 2020, that allows the participation of storage in regulation markets
- Spanish Strategy for Science, Technology and Innovation 2021-2027 (EECTI 2021-2027)

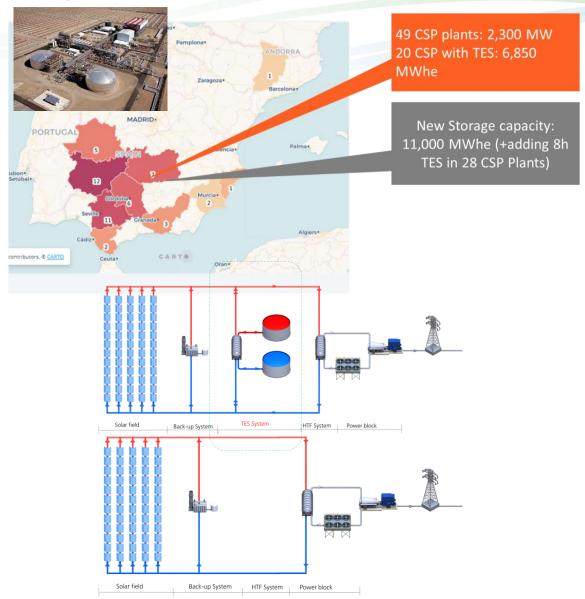
93nd Executive Committee Meeting (XC93) May 19th

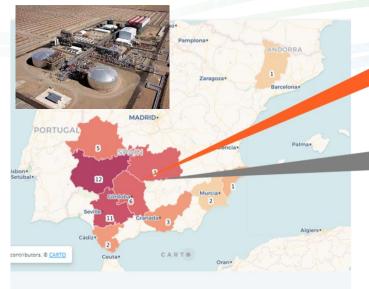
Top 3 cases/projects

CSIC vanadium flow battery

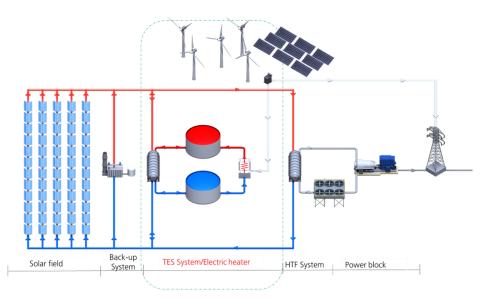
- Working prototype
 - 10 kW
 - 20 kWh
- Redox flow battery
- Designed for stationary uses
- Expected life >20 years

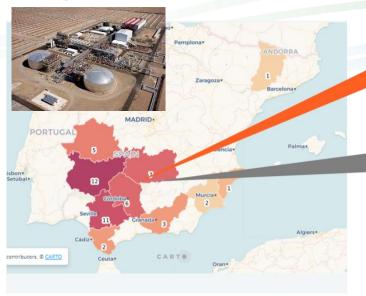
Thermal batteries with molten salt


- Two-molten salt tank in CSP plant for dispatchability
- Two-molten salt tanks in pumped heat electricity storage
- Two-molten salt tanks in LAES

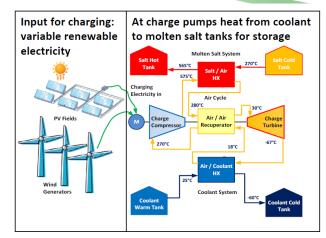

Iberian Center for Research in Energy Storage (CIIAE)

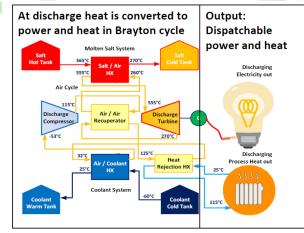
- The full cycle of energy storage, from the raw materials to its scale-up and application
- > Research:
 - Energy storage in the electricity sector.
 - Hydrogen and power to X.
 - Thermal energy storage
- Infrastructures:
 - -Pilot plant with scientific and technical infrastructure
 - -Technological incubator

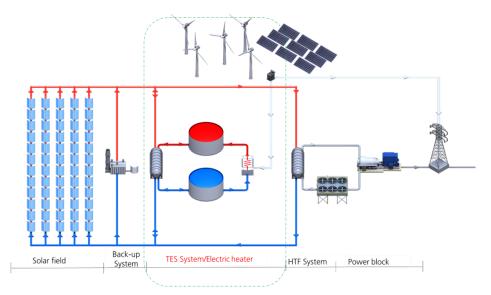


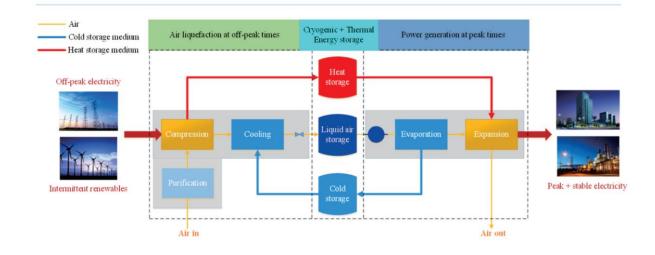

49 CSP plants: 2,300 MW 20 CSP with TES: 6,850 MWhe

New Storage capacity: 11,000 MWhe (+adding 8h TES in 28 CSP Plants)

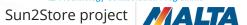


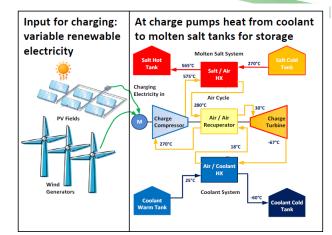


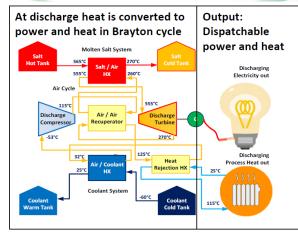


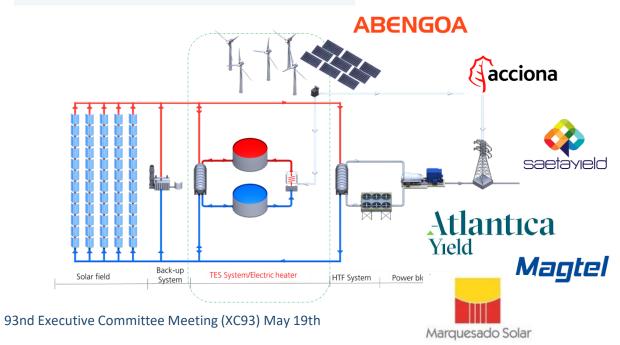

49 CSP plants: 2,300 MW 20 CSP with TES: 6,850 MWhe

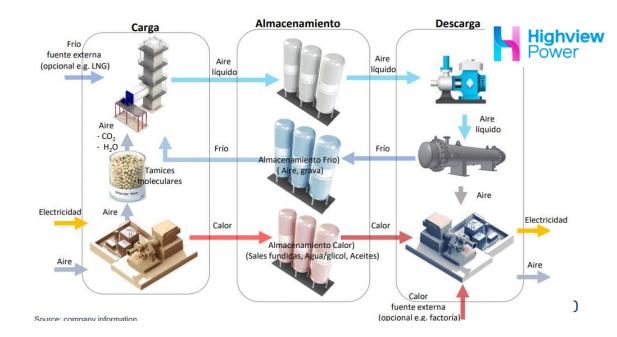
New Storage capacity: 11,000 MWhe (+adding 8h TES in 28 CSP Plants)



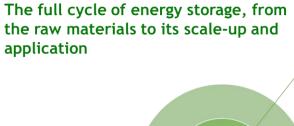


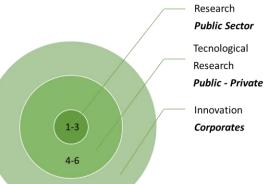





49 CSP plants: 2,300 MW 20 CSP with TES: 6,850

New Storage capacity: 11,000 MWhe (+adding 8h TES in 28 CSP Plants)





Maturity level

(TRL)

7-9

Expediente financiado por el Mecanismo de Recuperación y Resiliencia

Horizontal research lines:

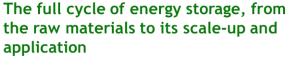
LH 1. Design, synthesis and characterization of advanced materials for energy storage at different levels.

LH 2. Multi-scale modeling: atomic and molecular, advanced control and monitoring, systems and scaling.

LH 3. Analysis of systems, life cycles and technoeconomic and environmental impact.

Verticals research lines:

LV 1. Energy storage in the electricity sector.


Fundamental

LV 2. Hydrogen and power to X.

LV 3. Thermal energy storage

Maturity level (TRL)

1-3

4-6

7-9

Innovation **Corporates**

Expediente financiado por el Mecanismo de Recuperación y Resiliencia

Horizontal research lines:

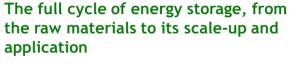
LH 1. Design, synthesis and characterization of advanced materials for energy storage at different levels.

LH 2. Multi-scale modeling: atomic and molecular, advanced control and monitoring, systems and scaling.

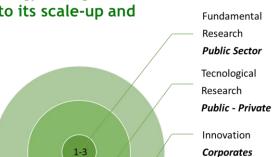
LH 3. Analysis of systems, life cycles and technoeconomic and environmental impact.

Verticals research lines:

LV 1. Energy storage in the electricity sector.


LV 2. Hydrogen and power to X.

LV 3. Thermal energy storage


- Advanced materials to improve the performance of current batteries. New applications that provide functionality to network operators.
- Battery degradation to improve their cycles and life times for the development of reliable and profitable products, as well as their possible recycling.
- Materials and nanotechnology applications to increase the energy density, insulation, resistance to high temperatures and reduction of costs of the supercapacitors. Applications in the energy storage markets.
- Components testing in Large Scale (MW) 22

Maturity level (TRL)

4-6

7-9

Expediente financiado por el Mecanismo de Recuperación y Resiliencia

Horizontal research lines:

LH 1. Design, synthesis and characterization of advanced materials for energy storage at different levels.

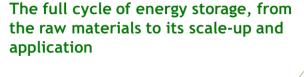
LH 2. Multi-scale modeling: atomic and molecular, advanced control and monitoring, systems and scaling.

LH 3. Analysis of systems, life cycles and technoeconomic and environmental impact.

Verticals research lines:

LV 1. Energy storage in the electricity sector.

LV 2. Hydrogen and power to X.


LV 3. Thermal energy storage

- Electrochemical materials and processes for production of green hydrogen.
- Materials and processes for hydrogen storage and transportation.
- Conversion to fuels and chemicals by integrating CO2 with hydrogen.
- High pressure electrolysis.
- Components testing in Large Scale (MW).

93nd Executive Committee Meeting (XC93) May 19th

1-3

4-6

7-9

Maturity level (TRL)

Tecnological Research **Public - Private**

Innovation

Corporates

Expediente financiado por el Mecanismo de Recuperación y Resiliencia

Horizontal research lines:

LH 1. Design, synthesis and characterization of advanced materials for energy storage at different levels.

LH 2. Multi-scale modeling: atomic and molecular, advanced control and monitoring, systems and scaling.

LH 3. Analysis of systems, life cycles and technoeconomic and environmental impact.

Verticals research lines:

LV 1. Energy storage in the electricity sector.

LV 2. Hydrogen and power to X.

LV 3. Thermal energy storage

- Phase change materials (PCM). Design and modification of PCMs, improvement of thermophysical properties, including heat transfer, encapsulation and stabilization.
- Materials and integration of thermal energy storage systems (TES) and cold thermal energy storage (cold TES) in adsorption cooling systems.

Contacts

Plataforma Tecnológica y de Innovación Española de Almacenamiento de Energía

https://www.batteryplat.com/

ASEALEN

Asociación española de almacenamiento de energía

https://www.asealen.es/

Asociación Empresarial de Pilas, Baterías y Almacenamiento Energético

https://aepibal.org/

The Energy Storage TCP Thanks for your attention cprieto@us.es

Country reports are an informative contribution of the ExCo delegates of the ES TCP member countries.

Views, findings, and publications of the ES TCP do not necessarily represent the views or policies of the IEA Secretariat or its individual member countries.